EXERCICE 3C.1

Calculer $\frac{-b}{a}$ et $\frac{c}{a}$ puis la somme et le produit des racines proposées, puis interpréter les résultats obtenus :

Polynôme	<u>-b</u> a	<u>c</u> a	x_1	x_2	Somme	Produit	x_1 et x_2 sont-elles les racines du polynôme ?
$A(x) = x^2 + x - 6$			- 3	2			
$B(x) = x^2 - 12x + 35$			- 7	5			
$C(x) = -x^2 - x + 12$			- 4	3			
$D(x) = 2x^2 + 2x - 4$			- 2	-1			
$E(x) = 2x^2 + 5x - 3$			<u>1</u>	- 3			
$F(x) = 6x^2 + x - 1$			<u>-1</u> 3	<u>1</u>			
$G(x) = -2x^2 + x + 15$			3	<u>5</u> 2			
$H(x) = 6x^2 + 17x + 5$			<u>-1</u> 3	<u>-5</u> 2			
$I(x) = x^2 + 2x - 2$			$\sqrt{3} - 1$	$\sqrt{3} + 1$			
$J(x) = -4x^2 - 4x + 1$			$\frac{-1 - \sqrt{2}}{2}$	$\frac{-1+\sqrt{2}}{2}$			

EXERCICE 3C.2

Retrouver rapidement les deux racines de chaque polynôme (sous la forme $x^2 - Sx + P$ où S et P sont respectivement la Somme et le Produit des racines) :

$$A(x) = x^2 - 7x + 10$$

☐ 2 et 5 ☐ -5 et -2 ☐ -2 et 5 ☐ -5 et 2

$$B(x) = x^2 + x - 12$$

☐ -3 et 4 ☐ 2 et -6 ☐ -2 et 6 ☐ -4 et 3

$$C(x) = x^2 + 9x + 20$$

☐ 4 et 5 ☐ -6 et -3 ☐ -5 et -4 ☐ 3 et 6

$$D(x) = x^2 + 8x + 7$$

☐ -5 et -3 ☐ -6 et -2 ☐ -8 et 0 ☐ -7 et -1

$$E(x) = x^2 + \frac{5}{6}x + \frac{1}{6}$$

$$\square$$
 5 et -6 $\square \frac{-1}{2}$ et $\frac{-1}{3}$ \square 1 et $\frac{1}{6}$ $\square \frac{1}{3}$ et $\frac{1}{2}$

$$\square$$
 1 et $\frac{1}{6}$

$$\square \frac{1}{3}$$
 et $\frac{1}{2}$

EXERCICE 3C.3

- **a.** Le polynôme $A(x) = x^2 3x + 2$ admet 1 pour racine. Retrouver l'autre solution en utilisant la somme ou le produit des racines.
- **b.** Le polynôme B(x) = $x^2 3x 4$ admet (-1) pour racine. Retrouver l'autre solution en utilisant la somme ou le produit des racines.
- **c.** Le polynôme $C(x) = 2x^2 15x + 28$ admet $\frac{7}{2}$ pour racine.

Retrouver l'autre solution en utilisant la somme ou le produit des racines.

d. Le polynôme $D(x) = 2x^2 + 11x + 5$ admet (-5) pour racine. Retrouver l'autre solution en utilisant la somme ou le produit des racines.

CORRIGE - NOTRE DAME DE LA MERCI - Montpellier

EXERCICE 3C.1

Si $x_1 + x_2 = -\frac{b}{a}$ et si $x_1 \times x_2 = \frac{c}{a}$, alors les valeurs proposées sont les racines du polynôme.

	ſ	1		ī	ı		
Polynôme	<u>-b</u> a	<u>c</u> a	x_1	<i>x</i> ₂	Somme	Produit	x ₁ et x ₂ sont-elles les racines du polynôme?
$A(x) = x^2 + x - 6$	$\frac{-1}{1} = -1$	$\frac{-6}{1} = -6$	- 3	2	-3+2=-1	$-3\times2=-6$	OUI
$B(x) = x^2 - 12x + 35$	$\frac{12}{1} = 12$	$\frac{35}{1} = 35$	- 7	5	-7+5=-2	$-7\times5=-35$	NON
$C(x) = -x^2 - x + 12$	$\frac{1}{-1} = -1$	$\frac{12}{-1} = -12$	- 4	3	-4+3=-1	$-4 \times 3 = -12$	OUI
$D(x) = 2x^2 + 2x - 4$	$\frac{-2}{2} = -1$	$\frac{-4}{2} = -2$	- 2	-1	-2-1=-3	$-2\times(-1)=2$	NON
$E(x) = 2x^2 + 5x - 3$	$\frac{-5}{2}$	$\frac{-3}{2}$	<u>1</u>	-3	$\frac{1}{2} - 3 = -\frac{5}{2}$	$\frac{1}{2} \times \left(-3\right) = \frac{-3}{2}$	OUI
$F(x) = 6x^2 + x - 1$	$\frac{-1}{6}$	$\frac{-1}{6}$	<u>-1</u> 3	<u>1</u> 2	$-\frac{1}{3} + \frac{1}{2} = \frac{1}{6}$	$\frac{-1}{3} \times \frac{1}{2} = \frac{-1}{6}$	NON
$G(x) = -2x^2 + x + 15$	$\frac{-1}{-2} = \frac{1}{2}$	$\frac{15}{-2} = \frac{-15}{2}$	3	<u>5</u> 2	$3 + \frac{5}{2} = \frac{11}{2}$	$3 \times \frac{5}{2} = \frac{15}{2}$	NON
$H(x) = 6x^2 + 17x + 5$	$\frac{-17}{6}$	$\frac{5}{6}$	<u>-1</u> 3	<u>-5</u> 2	$\frac{-1}{3} - \frac{5}{2} = \frac{-17}{6}$	$\frac{-1}{3} \times \frac{-5}{2} = \frac{5}{6}$	OUI
$I(x) = x^2 + 2x - 2$	$\frac{-2}{1} = -2$	$\frac{-2}{1} = -2$	$\sqrt{3} - 1$	$\sqrt{3} + 1$	2√3	2	NON
$J(x) = -4x^2 - 4x + 1$	$\frac{4}{-4} = -1$	$\frac{1}{-4} = \frac{-1}{4}$	$\frac{-1-\sqrt{2}}{2}$	$\frac{-1+\sqrt{2}}{2}$	-1	$\frac{1}{4} - \frac{2}{4} = \frac{-1}{4}$	OUI

EXERCICE 3C.2

Retrouver rapidement les deux racines de chaque polynôme (sous la forme $x^2 - Sx + P$ où S et P sont respectivement la Somme et le Produit des racines) :

$$A(x) = x^2 - 7x + 10$$

5+2=7 et 5×2=10

☐ **-**5 et **-**2

☐ **-**2 et 5

□ **-**5 et 2

☐ 2 et -6 ☐ **-**2 et 6

-4+3=-1 $et -4 \times 3 = -12$

☐ **-**6 et **-**3

□ -5 et -4 *-5-4=-9* $et -5 \times (-4) = 20$

☐ 3 et 6

☐ -6 et -2 ☐ -8 et 0

☐ -7 et -1 *-7-1=-8* et -7×(-1)=7

 $\frac{-1}{2}$ et $\frac{-1}{3}$

 $\frac{-1}{2} + \frac{-1}{3} = -\frac{5}{6}$ \Box 1 et $\frac{1}{6}$ \Box $\frac{1}{3}$ et $\frac{1}{2}$ Et $\frac{-1}{2} \times (\frac{-1}{3}) = \frac{1}{6}$

EXERCICE 3C.3

a. Le polynôme $A(x) = x^2 - 3x + 2$ admet 1 pour racine.

Retrouver l'autre solution en utilisant la somme ou le produit des racines.

$$\rightarrow$$
soit x l'autre variable : $x + 1 = 3$ et $x \times 1 = 2$ donc $x = 2$

b. Le polynôme $B(x) = x^2 - 3x - 4$ admet (-1) pour racine. Retrouver l'autre solution en utilisant la somme ou le produit des racines.

 \rightarrow soit x l'autre variable : x + (-1) = 3 et $x \times (-1) = -4$ donc x = 4

c. Le polynôme C(x) = $2x^2 - 15x + 28$ admet $\frac{7}{2}$ pour racine. \rightarrow C(x) = $2\left(x^2 - \frac{15}{2}x + 14\right)$

Retrouver l'autre solution en utilisant la somme ou le produit des racines.

$$\Rightarrow$$
soit x l'autre variable : $x + \frac{7}{2} = \frac{15}{2}$ et $x \times \frac{7}{2} = 14$ donc $x = 4$

d. Le polynôme D(x) = $2x^2 + 11x + 5$ admet (-5) pour racine. $\rightarrow D(x) = 2\left(x^2 + \frac{11}{2}x + \frac{5}{2}\right)$

Retrouver l'autre solution en utilisant la somme ou le produit des racines.

$$\Rightarrow$$
soit x l'autre variable : x + (-5) = $\frac{11}{2}$ et x × (-5) = $\frac{5}{2}$ donc x = $\frac{-1}{2}$